The negation of $ \sim s \vee \left( { \sim r \wedge s} \right)$ is equivalent to
$s \wedge \sim r$
$s \wedge \left( {r \wedge \sim s} \right)$
$s \vee \left( {r \vee \sim s} \right)$
$s \wedge r$
If $A$ : Lotuses are Pink and $B$ : The Earth is a planet. Then the
verbal translation of $\left( { \sim A} \right) \vee B$ is
$(p\rightarrow q) \leftrightarrow (q \vee ~ p)$ is
Which of the following pairs are not logically equivalent ?
The negation of the statement $(( A \wedge( B \vee C )) \Rightarrow( A \vee B )) \Rightarrow A$ is
The statement $( p \rightarrow( q \rightarrow p )) \rightarrow( p \rightarrow( p \vee q ))$ is