The negation of $ \sim s \vee \left( { \sim r \wedge s} \right)$ is equivalent to

  • A

    $s \wedge  \sim r$

  • B

    $s \wedge \left( {r \wedge  \sim s} \right)$

  • C

    $s \vee \left( {r \vee  \sim s} \right)$

  • D

    $s \wedge r$

Similar Questions

If $A$ : Lotuses are Pink and $B$ : The Earth is a planet. Then the
verbal translation of $\left( { \sim A} \right) \vee B$ is

$(p\rightarrow q) \leftrightarrow (q \vee  ~ p)$ is

Which of the following pairs are not logically equivalent ?

The negation of the statement $(( A \wedge( B \vee C )) \Rightarrow( A \vee B )) \Rightarrow A$ is

  • [JEE MAIN 2023]

The statement $( p \rightarrow( q \rightarrow p )) \rightarrow( p \rightarrow( p \vee q ))$ is

  • [JEE MAIN 2020]